2014/06/08 土木計画学研究発表会

経路判別可能なプローブデータを用いた 高規格道路及び一般道路の交通流分析

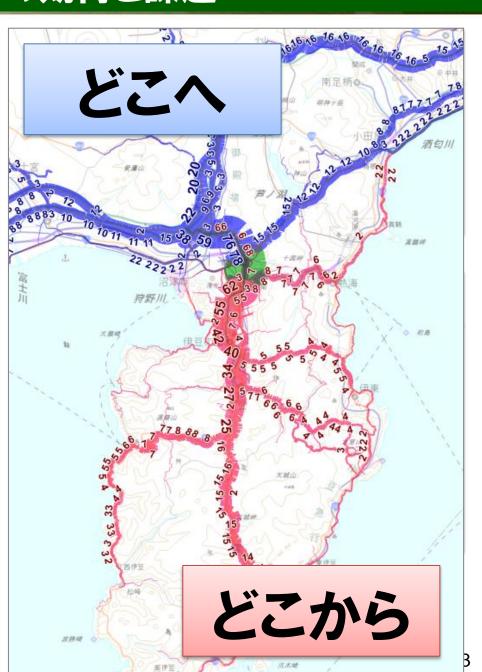
株式会社ナビタイムジャパン 交通コンサルティング事業 太田 恒平 発表構成

概要

分析① 開通効果

分析② 行楽期の渋滞回避法

分析③計画工事の影響


分析4 事故通行止めの影響

まとめと今後の展開

背景 変動期の交通流分析への期待と課題

交通流分析への期待

・断面の速度だけでなく 移動需要の「流れ」を 把握することが重要

背景 変動期の交通流分析への期待と課題

交通流分析への期待

断面の速度だけでなく移動需要の「流れ」を把握することが重要

沼津国道事務所Webサイトより http://www.cbr.mlit.go.jp/numazu/road/izu_jukan/suruga-effect.html

変動期の分析への期待

- ・ 交通の需要や供給が増減する時こそ対策が必要
- 例)道路開通、規制、行楽期…

中日本高速道路株式会社Webサイトより http://refresh-nexco.jp/

どうなった

背景 変動期の交通流分析への期待と課題

交通流分析への期待

断面の速度だけでなく 移動需要の「流れ」を 把握することが重要

変動期の分析への期待

- ・交通の需要や供給が増減 する時こそ対策が必要
- 例)道路開通、規制、行楽期…

データ取得の課題

- 手動(ナンプレ、独自プローブカー等)
 - → 高コスト
- ・路側センサー, リンク旅行時間
 - → 流れが不明
- ・道路管理者横断的なデータ
 - → 入手・統合困難

データ取得の課題

- ・過去・最新のデータが無い
- ・短期間のためサンプルを集めづらい

プローブデータを用いれば分析可能と考えた

目的

背景

交通流分析への期待・課題

変動期の分析への期待・課題

本研究 の目的 継続的に取得している携帯カーナビプローブデータを、 経路判別可能な状態で処理し、交通供給・需要変動期の交通流の 道路管理者横断的な分析への適用可能性を具体的に検証する。

本研究の分析事例

道路管理者・ドライバーのニーズが高いと考えられる 4事例(下表赤文字)を分析する。

タイムスパン	供給(道路)		需要(車両)	
	増加	減少	増加	減少
季節的		冬季規制	行楽需要 (GWの中央道)	
計画的	道路開通·改良 (伊豆縦貫道)	工事規制 (中央道集中工事)		
突発的		事故規制 (首都高火災)	イベント	事故•事件

使用データ

使用する携帯カーナビプローブデータ

- 対象サービス
 - ・ドライブサポーター
 - ・カーナビタイム for Smartphone
- ・測位方法
 - GPSで1~6秒間隔で測位
- ・加工方法
 - ・ユーザIDの日別振り直し、発着地付近のデータ削除 により個人を特定できないように加工
 - ・マップマッチング等のデータ処理を実施(下図)

交通流分析データの作成方法

概要

- ・(1)抽出断面(群)を通過した車両の経路を抽出する
- ・(2) 各通過断面の通過数、通過時間等を集計する。
- ・※ 抽出断面の配置を変えることで、下図のような様々な分析用データを作成する。

流入 流出 1断面を通過

これらのデータを組み合わせて分析を行った

分析① 開通効果

~伊豆縱貫道~

概要•利用状況

概要

- ・開通区間
 - 三島塚原IC~函南塚本IC
- ・開通日
 - 2014年2月11日
- ・集計期間
 - 2013,2014年2月12日~3月31日

清水町

概要·利用状況

概要

- 開通区間
 - ・三島塚原IC~函南塚本IC
- ・開通日
 - 2014年2月11日
- ・集計期間
 - 2013,2014年2月12日~3月31日

開通区間の断面交通流

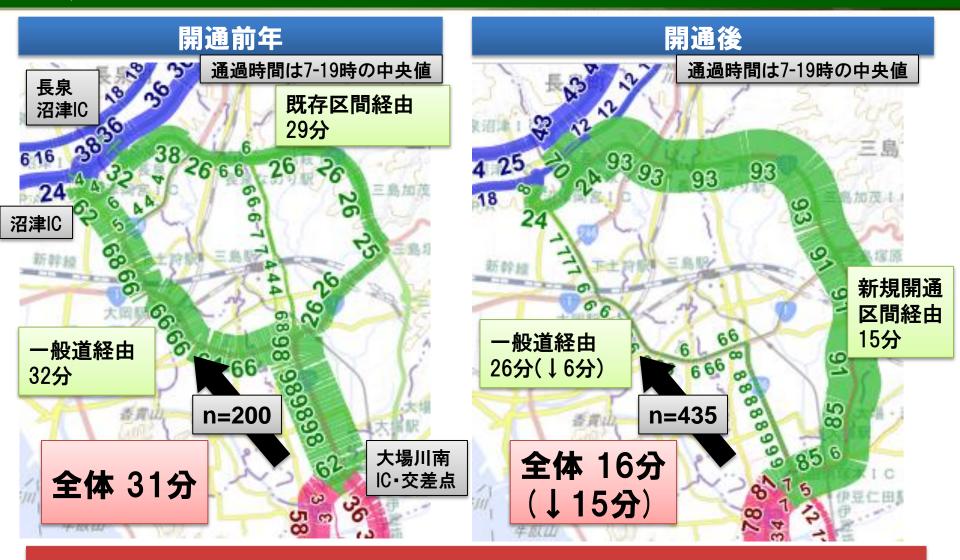
n=1,033

抽出断面:大場·函南IC→三島塚原IC

凡例

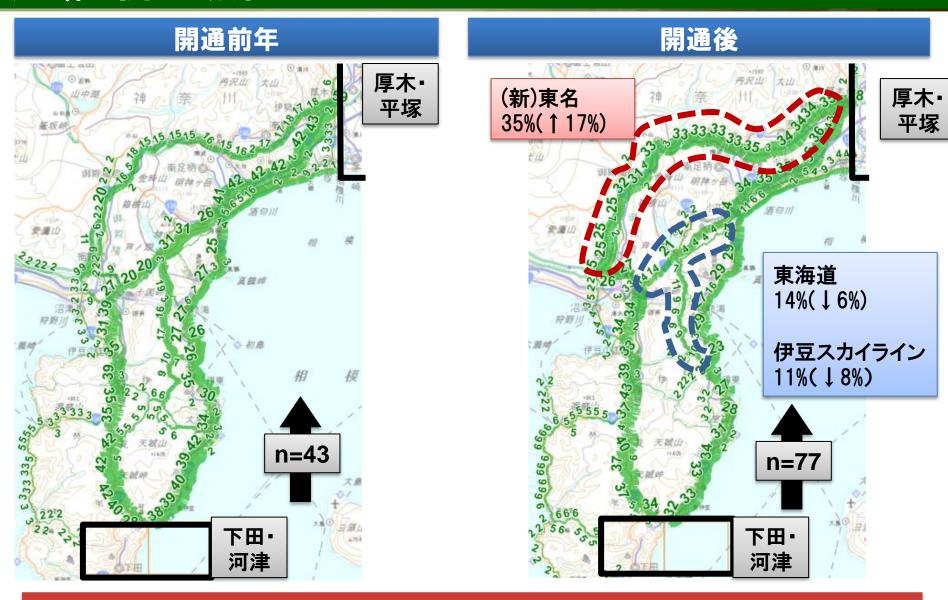
流入

抽出断面


流出

数字は流入・流出率

伊豆半島全体に 利用が 広がっている


狭域な開通効果(大場川南 → (新)東名 経路選択と所要時間)

伊豆縦貫道に利用が転換した

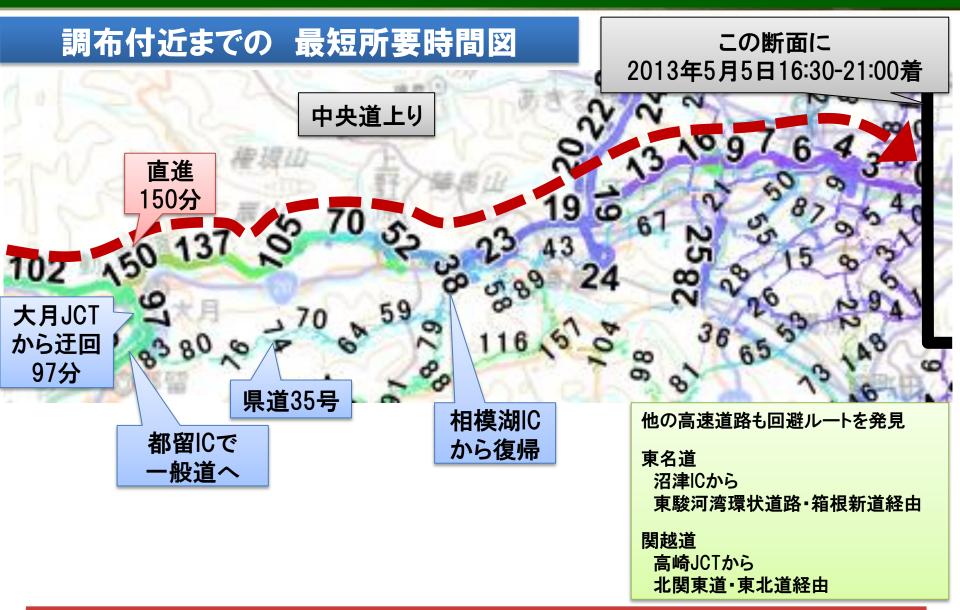
伊豆縦貫道経由・一般道経由の両方の所要時間が短縮した

広域な開通効果(下田・河津 → 厚木・平塚)



南伊豆~首都圏の経路が箱根越えから(新)東名に転換した

分析② 行楽期の渋滞回避法


~ゴールデンウィークの 中央道Uターンラッシュ~

時間差による渋滞回避

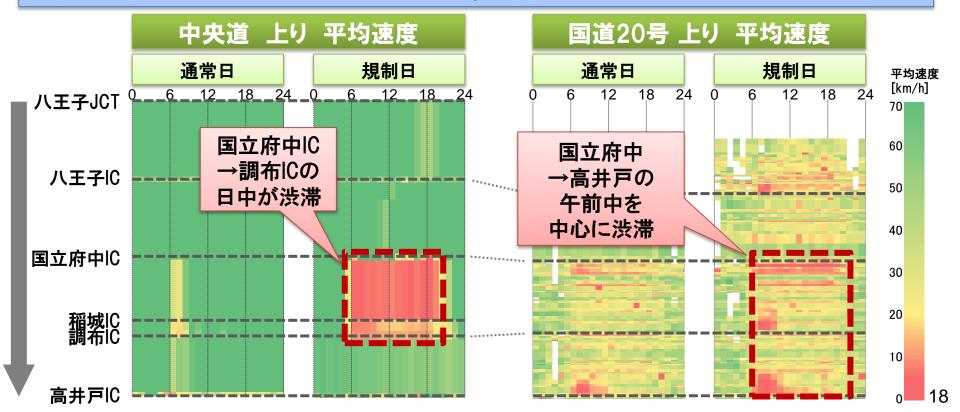
ピークから大きくずらさないと渋滞回避は困難

迂回による渋滞回避

渋滞回避ルートの実績が見つかる

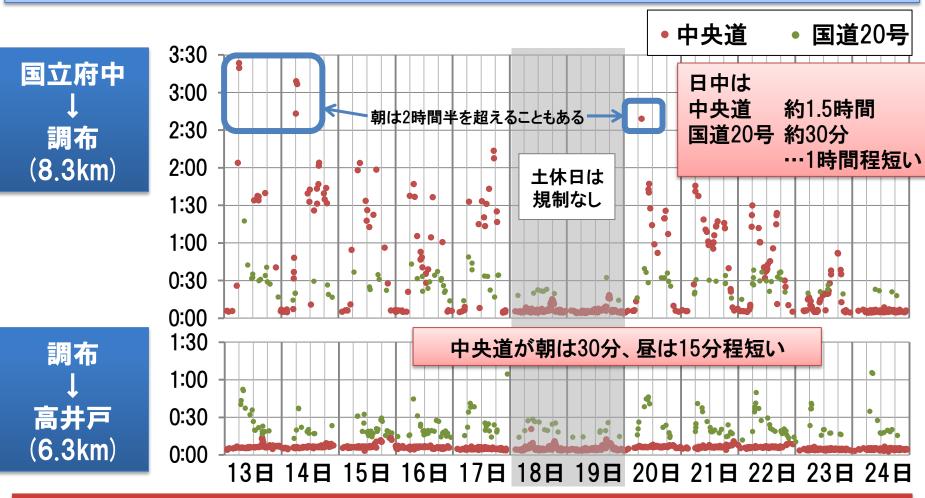
分析③ 計画工事の影響

~中央道集中工事~


概要·概況把握

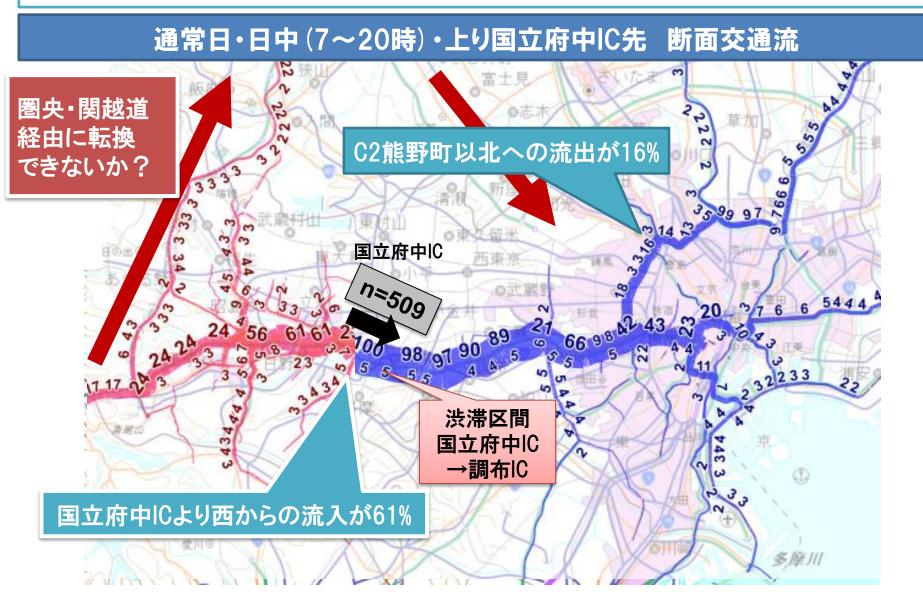
概要

- 車線規制区間 中央道 相模湖IC~高井戸IC
- 実施日 2013年5月13~24日 平日終日


時空間速度図による概況把握

- ・区間 中央道上り:IC等の分岐間, 国道20号上り:名称付き交差点間
- 期間 通常日:5月27日~6月5日の平日, 規制日:5月13日~5月22日の平日

並行一般道とのIC間の所要時間比較

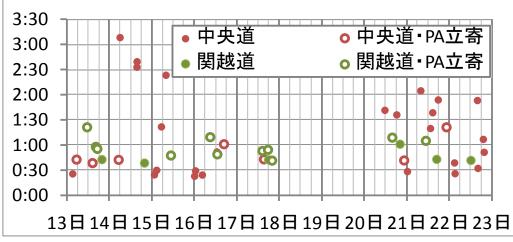


国立府中→調布のみ国道20号に迂回すると所要時間を短縮できる

料金施策や迂回案内策が有効ではないか

影響する広域交通流

広域迂回の検討のため、迂回対象となりうる交通流を通常期のデータから抽出した。



広域迂回の状況(上り八王子JCT起点)

八王子JCT 高井戸(36km) 大泉(67km)

区間所要時間

が早いことが多い

料金施策や 迂回案内策が 有効ではないか

分析(4) 事故通行止めの影響

~首都高速3号 火災~

概要・影響する広域交通流

概要

- 首都高速3号渋谷線が 火災により通行止めとなった
- ・発生日時
 - 2014年3月20日14時
- 通行止め解除日時
 - ・上り: 21日24時
 - ・下り: 23日14時

迂回状況(6号線・湾岸線方面)

南方面(3号下り) 小菅 4964 6 96%が 号三郷線 C2に迂回 n = 23池尻 湾岸線辰巳 辰巳 **〜横浜町** 横浜 n=28 町田 Ħ 86%が 保土ヶ谷BP に迂回

北方面(3号上り)

期間:2014年3月20日16時~21日22時

大部分が 自動車専用道内 で迂回している

横浜町田から 保土ヶ谷BPへは 迂回判断をしづらかった 可能性がある

- ・現場からの距離?
- ・他社線上での案内?
- ・迂回路の認識しづらさ?

まとめと 今後の展開

まとめ

- ①開通効果 ~伊豆縦貫道~
- ・経路転換、所要時間短縮効果を測定できた。
- ②行楽期の渋滞回避法 ~GWの中央道Uターンラッシュ~
- ・時間差、迂回による渋滞回避法を発見できた。
- ③計画工事の影響 ~中央道集中工事~
- ④事故通行止めの影響 ~首都高速3号線 火災~
- ・迂回経路の所要時間を比較できた。
- ・迂回促進が望ましい交通流を抽出できた。

経路判別可能なプローブデータの 変動期における交通流分析への適用可能性が確認された

今後の展開

交通情報提供者の役割

道路管理者 交通管理者 交通情報

施策の ための情報 交通情報 提供者

よりよい交通サービス

行動選択の ための情報

行動実績

ドライバー

技術開発の方向性

データ自体の改良

- •交通量の拡大補正
- ・断片データの補完
- ・立寄りの判定・補正

伝達方法の改良

- ・カーナビの案内
- •路上の リアルタイム案内
- •移動計画時の案内

経路上の 工事情報案内

渋滞予測 所要時間グラフ

→実例

実務に適用しながら技術開発を進める

混雑緩和のための案内例

